metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jian-Fang Ma,* Jin Yang and Jing-Fu Liu

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: jfma@public.cc.jl.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.008 \text{ Å}$ R factor = 0.057 wR factor = 0.143 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A nickel(II) fumarate complex with *o*-phenanthroline

In the dinuclear and centrosymmetric title complex, μ fumarato-bis[aquabis(1,10-phenanthroline)nickel(II)] fumarhexadecahydrate, $[Ni_2(C_4H_2O_4)(C_{12}H_8N_2)_4(H_2O)_2]$ ate $(C_4H_2O_4)\cdot 16H_2O$ or $[Ni_2(phen)_4L(H_2O)_2]L\cdot 16H_2O$, where phen = 1,10-phenanthroline and L^{2-} = fumarate, the nickel(II) cation is six-coordinated by two O atoms, one from a water molecule and the other from one end of a bridging L^{2-} anion, and four N atoms from two bidentate phen ligands. Each of the two independent L^{2-} anions is located about an inversion centre. Interestingly, one L^{2-} anion is bridging and the other acts as a counter-ion. The $[Ni_2(phen)_4L(H_2O)_2]^{2+}$ cations, water molecules and L^{2-} anions are connected through complex hydrogen-bonding interactions to form a threedimensional structure.

Comment

Recently, studies on metal-dicarboxylate complexes with aromatic *N*-donor chelating ligands have attracted special attention because of their interesting structural and chemical properties (Robl, 1992). It is well established that fumaric acid is a versatile ligand and that the coordination mode for fumarate, L^{2-} , can be tailored by introducing different neutral ligands to the complex (Young *et al.*, 1998). In our previous work, we have studied the effects of phen on cobalt(II), zinc(II) and cadmium(II) fumarate complexes, respectively (Ma *et al.*, 2003; Yang, Ma, Li & Liu, 2003; Yang, Ma & Liu, 2003). In this paper, we present the preparation and crystal structure of a nickel(II) complex of 1,10-phenanthroline containing L^{2-} anions (Fig. 1 and Table 1).

In the structure of (I), the coordination environment of each nickel(II) cation is defined by two O atoms, one from a water molecule and the other from one end of a bridging L^{2-} anion, and four N atoms from two chelating phen molecules. The distance between Ni and O2 is 3.288 (4) Å, an observation that confirms the monodentate coordination mode of each end of the L^{-2} anion. The charge balance of the dinuclear dication is provided by an uncoordinated fumarate ion, located about a centre of inversion. It is interesting that one L^{2-} anion bridges

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Received 22 August 2003 Accepted 3 September 2003 Online 18 September 2003

Figure 1

View of the local coordination of dinuclear (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

two nickel(II) centres to form a dinuclear cation, and the other acts as a counter-ion. The Ni $\cdot \cdot$ -Ni (-x, -y, -z) distance is 9.730 (3) Å. In the reported structures of $[M(\text{phen})_2(\text{-}$ $_{2}O)_{2}]L.4H_{2}O, M = Zn and Cd, the L²⁻ anions do not coor$ dinate the central metal cation but, rather, act as counter-ions. There are sixteen non-coordinating water molecules in the unit cell of (I).

The constituents of (I) are linked through hydrogen bonds to form a complicated three-dimensional network (Table 2). The water molecules play a role as both acceptors and donors, while the carboxylate-O atoms function only as acceptors, confirming their deprotonation.

Experimental

A mixture of NiCl₂·6H₂O (0.238 g, 1 mmol), fumaric acid (0.116 g, 1 mmol) and NaOH (0.080 g, 2 mmol) in water (10 ml) was stirred at room temperature, then 1,10-phenanthroline (0.198 g, 1 mmol) was added to the suspension. Green crystals of (I) were obtained from the solution after several days. Analysis calculated for [Ni₂(phen)₄L(-₂O)₂]L·16H₂O, C 48.37, H 5.22, N 8.06. Found: C 48.51, H 5.43, N 7.92%.

Crystal data

$[Ni_2(C_4H_2O_4)(C_{12}H_8N_2)_4(H_2O)_2]$ -	Z = 1
$(C_4H_2O_4) \cdot 16H_2O$	$D_x = 1.402 \text{ Mg m}^{-3}$
$M_r = 1390.60$	Mo $K\alpha$ radiation
Triclinic, P1	Cell parameters from 22
a = 10.736 (4) Å	reflections
b = 10.903 (3) Å	$\theta = 4.7 - 9.3^{\circ}$
c = 14.802(5) Å	$\mu = 0.66 \text{ mm}^{-1}$
$\alpha = 86.68(3)^{\circ}$	T = 293 (2) K
$\beta = 86.27 (3)^{\circ}$	Block, green
$\gamma = 72.46 (3)^{\circ}$	$0.44 \times 0.35 \times 0.32 \text{ mm}$
$V = 1647.3 (10) \text{ Å}^3$	
Data collection	
Siemens P4 diffractometer	$R_{\rm int} = 0.022$
ω scans	$\theta_{\rm max} = 26.0^{\circ}$
Absorption correction: ψ scan	$h = -1 \rightarrow 13$
(North et al., 1968)	$k = -13 \rightarrow 13$
$T_{\min} = 0.734, T_{\max} = 0.810$	$l = -18 \rightarrow 18$
7676 measured reflections	3 standard reflections
6365 independent reflections	every 97 reflections
3577 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.057$	independent and constrained
$vR(F^2) = 0.143$	refinement
S = 0.88	$w = 1/[\sigma^2(F_o^2) + (0.0653P)^2]$
5365 reflections	where $P = (F_o^2 + 2F_c^2)/3$
69 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ni-O1	2.070 (3)	Ni-N2	2.102 (4)
Ni-OW1	2.068 (4)	Ni-N3	2.086 (4)
Ni-N1	2.094 (4)	Ni-N4	2.102 (4)
O1-Ni-Ow1	90.76 (13)	OW1-Ni-N4	93.49 (14)
O1-Ni-N1	91.27 (14)	N1-Ni-N2	79.51 (15)
O1-Ni-N2	170.68 (14)	N1-Ni-N3	96.19 (15)
O1-Ni-N3	87.76 (13)	N1-Ni-N4	173.17 (15)
O1-Ni-N4	94.03 (14)	N2-Ni-N3	91.88 (15)
OW1-Ni-N1	90.74 (14)	N2-Ni-N4	95.07 (15)
OW1-Ni-N2	90.70 (14)	N3-Ni-N4	79.74 (15)
OW1-Ni-N3	172.94 (14)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
OW1−H12···O2	0.79 (2)	1.88 (2)	2.648 (5)	163 (5)
OW1−H11···O3 ⁱ	0.80(2)	1.94 (2)	2.727 (5)	170 (5)
OW2−H22···OW3 ⁱⁱ	0.80 (2)	2.00 (2)	2.799 (6)	170 (5)
OW2−H21···OW3 ⁱⁱⁱ	0.80 (2)	2.04 (3)	2.789 (6)	157 (5)
OW3−H31···O4 ^{iv}	0.80(2)	1.94 (2)	2.735 (6)	178 (5)
OW3−H32···OW7	0.82 (4)	2.04 (2)	2.808 (7)	157 (4)
OW4−H42···O3 ⁱ	0.84 (2)	2.00(2)	2.823 (6)	168 (5)
$OW4-H41\cdots OW2^{v}$	0.82(2)	2.06 (3)	2.800 (6)	150 (5)
OW5−H52···O4	0.786 (19)	2.18 (3)	2.780 (7)	133 (3)
OW5−H51···OW6	0.81 (4)	2.12 (2)	2.871 (8)	154 (4)
OW6−H62···O2 ^{vi}	0.824 (19)	2.17 (2)	2.960 (7)	159 (4)
OW7−H71···OW4 ^{iv}	0.744 (19)	2.30 (3)	2.914 (7)	141 (5)
OW7−H72···OW6 ^{iv}	0.979 (16)	2.00 (3)	2.815 (8)	139 (4)
$OW8-H82\cdots O1^{v}$	0.772 (19)	2.22 (2)	2.978 (6)	167 (4)
OW8−H81···OW4	0.716 (19)	2.09 (2)	2.784 (6)	163 (4)
OW9−H92···OW5	0.797 (15)	2.18 (2)	2.755 (8)	129 (2)
OW9−H91···OW8 ^{vi}	0.765 (19)	2.75 (4)	2.941 (10)	97 (3)
Commentary and any (i)	1 (;;)	1	(:::)	1 ()

x - 1, y, z; (ii) 1 - x, -y, 1 - z;(iii) 1 - x, 1 - y, 1 - z; (v) x, 1 + y, z; (vi) 1 + x, y, z.

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C-H = 0.93 Å and $U_{iso} = 1.2U_{eq}$ (C). The H atoms of the water molecules were located and refined with U_{iso} = $1.5U_{eq}(O).$

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

This work was supported by the Fok Ying Tung Education Foundation and the Ministry of Education of the People's Republic of China.

References

Ma, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. C59, m304-m306.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Robl, C. (1992). Mater. Res. Bull. 27, 99-107.
- Sheldrick, G. M. (1990). *SHELXTL-Plus*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Yang, J., Ma, J.-F., Li, L. & Liu, J.-F. (2003). Acta Cryst. E59, m568– m570.

Yang, J., Ma, J.-F. & Liu, J.-F. (2003). Acta Cryst. E59, m324-m326.

Young, D. M., Geiser, U., Schultz, A. J. & Wang, H. H. (1998). J. Am. Chem. Soc. 120, 1331–1332.